A flexible synthetic data generation framework for tabular data

José Pinto**, Ricardo Sousa?

4LIAAD-INESC TEC, FEUP Campus, Street Dr. Roberto Frias, Porto, 4200 - 465, Portugal

ARTICLE INFO ABSTRACT

Keywords: With the growing interest in artificial intelligence and in particular, deep learning, a lack of
Data Synthesis sufficient data to meet various needs is an ever increasing problem. Adding to this, issues of
Synthetic Data Generation data privacy and property are ever more prevalent. An attractive solution to these problems is
Value Imputation the generation of new synthetic data with the intended characteristics. As such, in this work, we
Machine Learning present a new synthetic data generation framework for tabular data. We show its efficacy and
Power Transformer flexibility in generating both independent and time series data. Furthermore, we complement
Mechanical Engineering this approach with a novel imputation-based data generator, which we show to be able to

automatically generate great amounts of realistic data from a small sample, with this output
being able to improve downstream model performance.

1. Introduction

In recent years, the field of Artificial Intelligence (Al) has been increasingly marked by its relation with data, and
therefore the growing Al subfield of data science. The generation, transmission, manipulation and consumption of
data have grown at an exponential rate, with heavily data-dependent pipelines and Machine Learning (ML) methods
now constituting the state of the art in many fields Anderson, Kennedy, Ngo, Luckow and Apon (2014); Tsirikoglou,
Kronander, Wrenninge and Unger (2017); Ekbatani, Pujol and Segui (2017); Devaranjan, Kar and Fidler (2020).

With the advent of deep learning, first brought into the limelight by the AlexNet Krizhevsky, Sutskever and Hinton
(2012) neural network, the interest of developing and employing these tools has all but grown Ekbatani et al. (2017);
Sun, Cuesta-Infante and Veeramachaneni (2019); Tripathi, Chandra, Agrawal, Tyagi, Rehg and Chari (2019). With
the advances brought by these methods to fields such as computer vision, natural language processing and robotics,
such surge in interest is no surprise Ekbatani et al. (2017); Martinez-Gonzalez, Oprea, Garcia-Garcia, Jover-Alvarez,
Orts-Escolano and Garcia-Rodriguez (2020); Boikov, Payor, Savelev and Kolesnikov (2021); Shakeri, Santos, Zhu,
Ng, Nan, Wang, Nallapati and Xiang (2020). However, all these different methods and applications have one thing in
common, the necessity for extreme quantities of high quality (usually labeled) data Tsirikoglou et al. (2017); Ekbatani
et al. (2017).

The gathering of high quality, sufficiently large datasets is a costly and time-consuming process, sometimes
exacerbated by other constrains of accessibility or even existence (sometimes more data simply does not exist, e.g. data
showing trends for multiple decades) Dahmen and Cook (2019); Zhang, Gonzalez-Garcia, Van De Weijer, Danelljan
and Khan (2018); Sun et al. (2019); Boikov et al. (2021). Other times, when such data already exists, using it to train
systems or providing it to third parties is not a viable option, due to privacy concerns or ownership issues K Dankar and
Ibrahim (2021); Ayala-Rivera, McDonagh, Cerqueus and Murphy (2013); Abay, Zhou, Kantarcioglu, Thuraisingham
and Sweeney (2018).

Given this underlying conflict (i.e. the desire to use data intensive methods while data may be scarce), it becomes
obvious why there has been increasing interest in the development and usage of data augmentation and generation
tools. If fact, such tools present not only the possibility of addressing the aforementioned problems, such as the lack
of sufficient data or the impossibility of sharing sensitive private data due to legal or ethical limitations Soltana,
Sabetzadeh and Briand (2017); Abay et al. (2018); Ayala-Rivera et al. (2013); but also many others, such as creating
datasets with the required level of difficulty for teaching, validating algorithms on a variety of datasets with differing
characteristics, creating pseudo-real data to fill under-development products and testing a variety of software systems
and communication frameworks Houkjer, Torp and Wind (2006); Dahmen and Cook (2019); Soltana et al. (2017);
Mannino and Abouzied (2019).

<] jose.f.pinto@inesctec.pt (J. Pinto)
< josepedropinto.com (J. Pinto)
ORCID(s): 0000-0003-1019-6687 (J. Pinto)

José Pinto: Preprint submitted to Elsevier Page 1 of 14

josepedropinto.com

A flexible data generation framework for tabular data

However, the generation of synthetic data is not an easy process. Important characteristics of any data generation
methodology include data throughput (amount of data generated per unit of time), data realism (similarity to the target
or real data in terms of size and distribution), control and flexibility (allow the user to define complex intervariable
relations of many kinds) and ease of use Houkjer et al. (2006); Dahmen and Cook (2019); Anderson et al. (2014);
Krishnan and Jawahar (2016). Data realism in particular is one of the most difficult to achieve, while also being, for
most applications, one of the most important, as the degree of data realism greatly affects the performance of ML
systems Anderson et al. (2014); Tripathi et al. (2019); Martinez-Gonzalez et al. (2020).

It is taking into consideration the variety of existing problems and subject areas that we developed and now present
a new synthetic data generation framework for creating realistic tabular datasets. In this framework, a great focus was
placed on expansibility, flexibility, ease of implementation and use. To complement this framework, we also present
a novel imputation-based synthetic data generation method to automatically expand small, limited datasets, while
maintaining complex intravariable and intervariable relations and distributions.

Thus, with this in mind, the rest of this paper is organized as follows: (1) First, we present the related work in
the synthetic data generation field at large. (2) Then, a description of the framework’s design concepts, our proposed
API and examples of some functions and operations are given. (3) An in-depth explanation of our imputation-based
data generation method follows. (4) We complement this with examples of our framework in practice, as well as other
results. (5) Finally, we discuss our main conclusions and future work.

2. Related Work

Within the various fields that utilize data as a critical part of their processes, there are many formats in which such
data can appear. The most basic format is highly structured tabular data, where tables or relational tables, containing
rows (entries) and columns (variables) allow easy access to all information. Semi-structured data can come in several
forms, such as XML or JSON formats, which typically have a well-defined set of rules for the structure and relation
of elements. Unstructured data are one of the most common and difficult to use data types, including text files, images
and videos.

In general, the generation of synthetic tabular datasets consists of modeling the joint probability distribution of
the data Sun et al. (2019). Modeling this distribution is critical to ensure data realism, with multiple competing
approaches trying to accomplish this. In Mannino and Abouzied (2019) a Directed Acyclic Graph (DAG) is used
to define the relations between different variables, ensuring that maintaining said relations is tractable. Tools such as
Benerator Ayala-Rivera et al. (2013) and the approach by Jeske, Lin, Rendon, Xiao and Samadi (2006) provide a good
baseline for this task. To improve upon these results, Sun et al. (2019) presented a new approach using vine copula
models. As creating vine copula models requires multiple discrete decisions related to their structure, a Long Short-
Term Memory (LSTM) network was trained through reinforcement learning. The work in Pei and Zaiane (2006) focuses
on the task of testing clustering algorithms, presenting a generator capable of creating 2D datasets of clusters with
various formats, densities and sizes, while presenting an interesting way to characterize their "difficulty". Extensive
tests of 6 clustering methods were performed, with DBSCAN obtaining, in general, the best results.

Generating industrial-sized datasets (many terabytes) is also an important area of interest, with Hoag and Thompson
(2007) showing their high-performance parallel computing focused synthetic data generator. They build on their
previous work, by providing an highly flexible XML-based input language, Synthetic Data Description Language
(SDDL). Preserving data privacy is another critical problem, where generator based approaches such as the one
presented by Abay et al. (2018) have proven to be a viable alternative for anonymization. In this work, multiple deep
learning autoencoders are used on a variety of datasets, not only anonymizing data but also allowing downstream ML
models to achieve great results, which is critical for such a tool. Despite the variety of approaches, satisfying logical
constraints (e.g., an end date being greater than a start date) is a very complex task. Soltana et al. (2017) takes a great
stride forward in this aspect, by developing a method that automatically tweaks created data entries until they respect
both statistical and logical constraints placed on the data.

The generation of time series data adds a new degree of difficulty, where previously independent data entries are
now highly related. Much like for simple tabular data, there is a myriad of different approaches. In Dahmen and Cook
(2019), nested Hidden Markov Chains (HMMs) are used to model the hierarchical nature (series inside series) of smart
home datasets. A deep learning synthetic data generation approach is provided by Alzantot, Chakraborty and Srivastava
(2017), where a combination of stacked LSTMs is used to create the statistical parameters (mean and variance) for a
Mixture Density Network (MDN), which is in turn responsible for the final generation process. A further degree of

José Pinto: Preprint submitted to Elsevier Page 2 of 14

A flexible data generation framework for tabular data

complexity is created by the addiction of spatial relations to the data, on spatio-temporal datasets. To address this, an
interpolation-based data generation approach is proposed by Yu, Ganesan, Girod, Estrin and Govindan (2003), with
which it is possible to create values for locations/times that were not measured, permitting the generation of data points
at new times and places, while preserving spatio-temporal data relations.

Given the large amount of synthetic tabular data generation approaches, application areas and strategies for
integration into data driven pipelines, there are several questions relating to best practices that a practitioner might
have. With this in mind, K Dankar and Ibrahim (2021) presents a set of results and guidelines for synthetic data
generation. They address questions related to parameter optimization, transfer learning, relations between synthetic
data quality measures and downstream model performance, and more. This is performed on a very healthy set of 15
datasets and 4 popular data generators.

On the other hand, the different and more complex structure of relational tables and semi-structured formats, such
as JSON and XLM, give rise to the need for new algorithms. In the work of Houkjer et al. (2006), where synthetic
relational datasets are created, concept graphs are used to enforce the intended variable distributions, primary/foreign
key relations, and dependencies between the same row and entries of the same column. As an alternative, Anderson
et al. (2014) focuses on the task of data quantity and anonymization. A large multi-TB Internet of Things (IOT) dataset
is employed to automatically select the best statistical distributions and parameters for numerical variables, while
unbalanced Huffman trees efficiently model categorical value frequencies. Much concern and detail was placed on the
XML structure of the data, with the different paths in the XML documents being modeled, as well as their combinations
and frequencies, with the variable models being independent for each path. Although inter-variable relations are not
maintained, the method is highly efficient (generating TBs of data) and scalable.

In addition to tabular generation, the generation of synthetic images is one of the most common tasks. In some
instances, the image generated is the final intended output, and a goal by itself; but also about as often, the generated
images are merely a means to better train or validate computer vision algorithms. Most effective existing methods use
one of two approaches; a deep learning approach, where images are generated by applying deep learning models on
random noise; and a rendering approach, where typically game engines (already designed to create many high-fidelity
images) are employed to create diverse scenarios and image sets.

COVID-19 detection in CT scan images is performed in Amin, Sharif, Gul, Kadry and Chakraborty (2021), which
utilizes something quite novel in the field of deep learning, quantum computing, which not only allowed the obtention
of the results faster, but also significantly improved model performance. In rendering-based methods, the addition
of camera defects, such as motion blur and distortions, is often critical for downstream model performance. Both
Planche, Wu, Ma, Sun, Kluckner, Lehmann, Chen, Hutter, Zakharov, Kosch et al. (2017) and Tsirikoglou et al. (2017)
take this into account for generating depth images from CAD models and creating cityscape images from a procedural
world, respectively. Devaranjan et al. (2020) takes a different approach to the rendering problem, using reinforcement
learning to generate worlds from context-free grammars. They developed on their previous work by automatically
extracting scene structure (number of objects of each type and relations; for example, 1 road with 2 cars) and distribution
parameters (object location, orientation, etc.) from existing images. Unlike other works, this method of rendering image
generation requires minimal manual work, being mostly automated.

The problem of generating data for robotic tasks is addressed in Martinez-Gonzalez et al. (2020), where Unreal
Engine 4 is used. Unlike other works, a large variety of output image types is provided, including not only the typical
RGB images, but also depth, segmentation and normal masks; while permitting real-time interaction with the space
via Virtual Reality (VR) headsets. Although large labeled RGB image datasets are now quite common, other types of
imagery can be very hard to come by. This is problem that Zhang et al. (2018) aims to solve, presenting a method to
translate RGB images into Thermal InfraRed (TIR) images. To tackle this, a deep learning approach is used, where
two Generative Adversarial Networks (GANS5) are tested, Pix2Pix and CycleGAN. The usage of Pix2Pix led to the best
results, with trained downstream models achieving improved performance by complementing the real data with the
generated one.

Image compositing is another alternative for synthetic image generation, where different components of various
images are combined to create a new one. The main challenges with this kind of approach stem from differing conditions
(lighting intensity, direction, strength, color, etc.) between various source images, as well as artifacts that can be added
during the compositing process. While in the work by Tripathi et al. (2019) these artifacts are embraced, with even
more added to reduce their discriminatory ability for downstream models, other approaches such as Ekbatani et al.
(2017) try their best to remove them by using a variety of transformations. At the same time, Boikov et al. (2021) uses
blender to create and add defects to steel images. As both the base image and the defects are created in the same setting,

José Pinto: Preprint submitted to Elsevier Page 3 of 14

A flexible data generation framework for tabular data

with adjustments to lighting and other effects being performed later in the process, no compositing artifacts are present
in the final result.

Finally, the generation of text, handwritten images and symbols is another area of great interest. Both Krishnan and
Jawahar (2016) and Taranta, Maghoumi, Pittman and LaViola Jr (2016) address the problem of generating handwritten
text and symbols. While the former applies changes to the distance between points, taking into consideration
characteristics such as the velocity of the pen; the latter uses handwritten fonts and a set of transformations (shears,
translation, line stroke width, etc.) to accomplish this task. Although the generation of handwritten text and symbol
images is not easy, the creation of realistic language directly in text form is by no means simpler. Shakeri et al.
(2020) tries to tackle the generation of question-answer pairs by employing an encoder-decoder transformer deep
learning architecture, BART. Extensive validation tests were performed with several datasets and models, with the
data generated by the new method allowing models to surpass state-of-the-art results in question answering systems.

From the large variety of application fields, problems and approaches, it should be clear to the reader that there is
a lot of interest in the usage of synthetic data generation methods. Taking this into consideration, throughout the next
section we will present our take on this problem by detailing our tabular data generation framework.

3. Generator Framework

There are many competing attributes, characteristics and capabilities that data generators strive for, which include
data quantity and quality, user control, ease of use, ease of implementation, resource efficiency and efficacy. As we
have shown before, various synthetic data generators focus on a few of these areas, neglecting others; while always
showing some degree of efficacy in all of them. Taking this into account, we place our focus on four of these, data
quality, user control, ease of use, and ease of implementation.

To accomplish this, we based our framework on a very simple core concept; only base variables (creating
independent variables) and transformations (creating dependent variables) exist. Despite its simplicity, a wide array
of data distributions and inter-variable relations can be easily defined. Furthermore, should some capability be found
lacking or the generation of specific distributions to be burdensome, new base variables and transformations can very
simply be added.

To tie the different base variables and transformations together, we employ a pipeline which applies these simple
operations in the order they are added. As any practitioner familiarized with the fields of data science or Al in general
would be familiar with the concept of using pipelines, it should be a very simple concept to understand and utilize. A
diagram of a typical generator pipeline can be seen on figure 1.

Depends on
Depends on BT
. Depends-éﬁ""*.‘ Depends onh‘n\

Imputation

Transformation Transformation
Generator

Random Date to
Value Sample Time Stamp

Figure 1: Diagram of an example generator pipeline.

José Pinto: Preprint submitted to Elsevier Page 4 of 14

A flexible data generation framework for tabular data

Base variables can thus be divided into two categories, tabular and time series. We will not enumerate all base
variables and transformations that we have implemented, as by the very nature of the framework, which ones are, as
well as the total amount, can change to meet the user’s required needs. Nevertheless, we will present a few in order
to provide a good understanding of what should be expected for each kind. Tabular base variables include as such,
statistical distributions, like normal, exponential, and Poisson, as well as random sampling of categorical variables
or creation of random timestamps and dates. Time series variables, on the other hand, include counters, random
increments, increasing dates and times according to some distribution (for example, Poisson) and Markov chains for
the generation of categorical variables.

It bears mentioning that for both the base variables previously described, as well as the transformations which we
will soon describe, the various parameters, such as, statistical moments, transition functions, offsets and extremes are
defined at the time the operations are added to the pipeline.

Taking this into consideration, the set of transformations is significantly larger. It includes algebraic transforma-
tions, such as exponential and logarithm; arithmetic, such as addition or multiplication by a value; trigonometry, such
as sin, tanh, arccosh, conversion to radians; addition and multiplication of columns; rounding and floor operations;
clipping, addition of noise, such as normal noise, transients and swapping of categorical values; and many others.

In addition to the various operation parameters mentioned above, which change on an operation-by-operation basis,
there are two parameters that are always considered for transformations. These are the names of the columns that will
be transformed and the names of the output columns. Depending on the nature of the transformation, output columns’
names may be automatically generated or a column may be transformed in place, for ease of use.

It can be seen that with sufficient variety in the supplied operations, an unbounded degree of control and complexity
of the output datasets is achievable. However, the main drawback of this approach is that it requires a thorough
understanding of the intended data characteristics, as well as, a good understanding of how to achieve them with a
combination of different operations. As can be imagined, depending on the complexity of our intended results, this can
be a difficult task; a difficulty that we aim at easing with the data driven approach detailed in the next section.

4. Imputation based data generation

The usage of data-driven ML models for the task of data generation is nothing new, with a variety of deep learning,
classical ML and interpolation-based approaches existing. However, to our knowledge, we are the first to propose an
imputation-based approach for data generation. Even if such an approach exists, unbeknown to us, it is surprising that
it would be so little widespread, as imputation seems to lend itself very well to data generation. In fact, missing value
imputation is already generating data, if only in the more limited setting of filling partial rows. Therefore, harnessing
the power of imputation-based algorithms for data generation seems to have great potential.

Given this, we propose a method that would function as a wrapper to any imputation method, allowing its
capabilities to be used for synthetic data generation. It works the following way: Given a dataset, firstly the imputation
method is trained on the data. Then any missing values in the original data are imputed to create a complete dataset. For
each entry to be generated, a seed row is created by randomly sampling a row from the original data and M variables.
Finally, the values for the rows that were not sampled are filled using the imputation method. This process is repeated
to generate an arbitrary number of new entries.

It should be clear that the selection of the imputation method is critical, with an important property being that such
method should be non-stochastic, as this will increase the variety and quality of the output. Therefore, we employed an
imputation method which was developed in one of our previous works. This method presents two crucial improvements
for the task at hand over other existing imputation methods. The first is that it is non-stochastic, introducing some
degree of randomness and variability of the output, even for the same inputs. The second is that it works under a
different principle from other imputation methods. Almost all imputation methods work, much like regular regression
and classification methods, by trying to reduce the overall error rate of imputed values (difference between imputed
and real values). Although this error reduction is very important it tends to introduce some degree of bias and not
preserve variable and inter-variable distributions. Our method tries to better preserve variable distributions at the cost
of increased error, which we believe could lead to increased downstream model performance. As a mock example,
we could imagine a normal distribution. In an error reduction approach, a method would always predict the mean (if
there is no more information), while a distribution-preserving approach would randomly create normal samples (which
would very likely increase the overall error).

José Pinto: Preprint submitted to Elsevier Page 5 of 14

A flexible data generation framework for tabular data

As we have already extensively detailed our method in our previous work, now only a brief overview will be
provided. This method, which we named Sampling Imputation (SI), works in the following way: For each distinct
variable subset of size K, regression and/or classification models are trained. All models are stored together with their
performance metrics, R? for regression and accuracy for classification!. To impute new values, first valid models (with
the intended variable as target and other non-missing variables as features) are identified, then from these a random
model is sampled, with the likelihood of being picked proportional to its performance, and finally, the value is imputed
according to the model’s prediction.

Given the fact that multiple models are created by using data subsets, the similarities to ensemble-based methods are
clear. The main difference is that when it comes to imputing a new value, instead of combining the different predictions,
one at random is selected. This can therefore be seen as, instead of averaging the predictions per value, as averaging
over the whole dataset. Similarly to ensemble methods, any number of identical or different methods can be combined,
generating new values with the intended amount of variety. The main drawback of this method is the computational
power required to train all the different models.

The astute reader might have noticed a limitation with the described approach, a limit on the unique number of
seed rows that can be created. There are several options to raise this limit. In increasing order of effectiveness, (1)
obtain data with a higher number of rows or columns N; (2) set the number of sampled columns M to [%] ; (3) set the

number of columns used per model K to [%] ; (4) set M to [%] and K to [%] ; (5) use all combinations of M and K
such that M<N and K<M; (6) increase the number of unique models for each column combination. While using only
option 5, the limit on the number of unique generated rows is given by equation 1. As an example, if we have a dataset
with 1000 rows and 10 columns, this limit would be 5.8¢” (about 58 million).

N M NI M! NI
= ()2 () = e ¢ e -
M K]~ MI(N-M)" K\(M-K) K!(N-M! M -K)!

Given this, it should be clear that the limitation on the number of unique entries can be easily surpassed, with only
the limitation in terms of computational time remaining. With this addressed and as we have thoroughly detailed our
methodology, giving the reader an in-depth understanding of our approach, framework and methods, throughout the
next section we will present examples of our proposed API, generation capabilities and other results.

5. Results

Data can come in an effectively endless variety, with any combination of characteristics, such as distributions,
relations, number of variables, etc. Therefore, it would be impossible to enumerate all possible dataset structures,
which then extends to all use cases of an effective data generator. Given this, we will focus on showing the flexibility
of our proposed framework, and how with just a simple set of operations we can create any desired dataset. We will start
by presenting two simple generation examples, one of time series and another of independent tabular data, where both
the code and visualization of the output will be inspected. Throughout the remainder of the section, we will perform a
more in-depth analysis of an application of our imputation generator, comprised of data similarity metrics, comparison
plots and the effects on downstream model performance.

In signal analysis, most common types of data have simple sinusoidal structures with some sort of perturbance.
These perturbations include interharmonics (multiple overlapping signals with different amplitudes and frequencies),
transients (sudden changes in the values), notches (cuts in the sinusoidal structure), among others. From these we opted
to generate an example of "sag", where the amplitude of the wave temporarily decreases. The code to generate these
data can be found on listing 1, while the output in figure 2.

There are a few important aspects to note regarding our proposed API and the way in which we generated this signal,
as shown in the code listing. The first point of interest is that all the different operations are defined in VARTABLES and
TRANSFORMATIONS. Although this is not the most typical approach, it has two advantages in terms of usability,
related to Integrated Development Environments (IDEs). The first is that most IDEs contain autocomplete features, and
thus would automatically provide a listing of all operations. The second is that it allows direct access to information
about the operation (parameters, docstrings, etc.). Both reduce the need for external documentation or peeking inside

I'Since the original data may have missing values, different models may have various sizes of validation data, with the performance not being
directly comparable. To solve this, the performance values saved are the lower bound of the Wilson score confidence interval.

José Pinto: Preprint submitted to Elsevier Page 6 of 14

A flexible data generation framework for tabular data

Sag Time Series

H I
= TR

Figure 2: Example of signal with "sag".

the code, which greatly enhances ease of use. The second and last point regards the way in which we created the
signal, in which Markov chains were used to create state transitions, while each of the states (two signals with the same
frequency and different amplitudes) were individually created. Using this approach, any two signals can be switched
or interpolated in accordance with our required parameters, and therefore it provides a great degree of flexibility. It
would, of course, be possible to create a single operation that would generate this kind of data; however, we consider it
to be both more important and interesting that many different datasets can be generated from much simpler operations.

Building upon these ideas, the next generation example shows the same principles in action; with independent
tabular data being created. This example, however, requires some more background, with an understanding of said
background being important not only for this example, but also for the remainder of this section. The necessity of
creating this generator was brought about by a problem related to one of our previous works, and therefore it only
makes sense to use the same target domain; power systems in general and power transformers in particular. There are a
variety of problems related to power transformers, with two of the most common being fault diagnosis and Health Index
(HI) prediction, with this next example pertaining to the latter. Predicting HI entails identifying a single number or
value which can represent the overall condition of a system (a power transformer for our case), with typical numerical
values ranging between 0 and 5, while categorical ones, between very bad and very good. When designing systems to
predict HI, experts’ opinions are typically considered ground truth, with models trying to approximate it using a series
of measured features.

For this example, we do not aim at creating a new HI prediction model, but instead at replicating a model for which
all parameters are already available. Given this, we chose one of the models presented in Zuo, Yuan, Shang, Liu and
Chen (2016); the one with the highest number of features, which although does not present the best results, seems to
be the most interesting to replicate, given its complexity. The model in question is of binary logistic regression with
the full function definition being given by equation 2, where x1 to x6 represent respectively water content, acidity, oil
breakdown voltage, dissipation factor, dissolved combustible gases and 2-Furfuraldehyde content.

1
HI = 2)
| + 54570246, +28.604,)~0.171 +0.112,, +0.01, +0254,)

To carry out the generation process, we first need to generate each of the individual features, then perform a linear
combination of them according to the given coefficients, and finally apply the remaining mathematical operations
to perform the logistic function. The first step is the most complex, requiring the selection of a distribution and the
respective parameters. To identify these, we used a dataset that was provided to us by Efacec, which is thoroughly
detailed in our previous work. It contains not only the features required by this model but many others, while having
more data entries (about 1000) than those used in the Zuo et al. (2016) paper (about 30). Given this, we selected the
normal distribution for all features and used the mean and standard deviation of these features extracted from our data.
The code to generate this data can be seen on listing 2, where the means, standard deviations and various coefficients
have already been filled in, while the features can be seen in figure 3 and the final HI in figure 4.

As with the previous example it would be possible to create a single operation that does the same as the set used, for
example, a single logistic transformation. Conversely, even without the "Linear" transformation which does the linear

José Pinto: Preprint submitted to Elsevier Page 7 of 14

A flexible data generation framework for tabular data

— Water Acidity BOV
008 & noz0
5
0.06 0015
4
z z
£ 3 2
0.04 z I polo
2
002 0005
1
0.00 [0000
-20 -10 0 10 E] k4] -03 -02 -01 00 01 02 03 04 -50 25 5 w0 00 125 150
0.0010
175 —— DF /\ TDCG 10 —— Furan
150 [
0.0008
/ \ 08
125 / \
[\
Lo , 00006 (\ 06
i { \ i
5 [\ 5
0.5 2 0.0004 / \ a
/ \ 04
0.50
0.0002 02
0.25 \\-
0.00 0.0000 —_ 00
-2000 -1000 0 1000 2000 3000 -2 -1 0 1 2 3

o5 10 15

Figure 3: Density plot of features generated to predict HI.

14

12

10

-0.50 -0.25

Figure 4: Density plot of HI generated from logistic model.

combination of the features, the same result could be achieved with a set of sums and multiplications of columns and
scalars. This number of options should reinforce the flexibility of our approach and be a strong proof of its efficacy.
Although the two previous examples have been relatively simple, the next one, which relates to the usage of the
imputation generator will be more in depth, as to show its efficacy, a far more detailed analysis is required. For this
case we aim at generating more entries of the previously mentioned Efacec provided power transformer dataset which
contains over 30 variables, only 1000 entries and a very large number of missing values; with some columns having
over 80% of values missing. We will discuss the preprocessing and generation process, do a graphical comparison of
generated and real distributions and relations, showcase similarity metrics, and finally inspect the effects of using the
generated data on downstream model performance.
The first step in our approach involves some data preprocessing. The bare minimum required was done, which
should show that our methodology functions with minimal manual work. This preprocessing consisted of standardizing

categorical values (some values are different but represent the same thing), changing numerical values from scientific
in float values and other minor non data changing alterations. Then the

notation to regular floats, changing "," to "."

José Pinto: Preprint submitted to Elsevier Page 8 of 14

A flexible data generation framework for tabular data

generator was created, and the generation process was started. To maximize the quality of the synthetic data, the number
of models trained was similarly increased as far as our computational resources allowed; with training taking roughly
a week. A total of 500000 (half a million) data rows were generated, with this taking about 18 hours.

The first step to ascertain the quality of the generated data is, as stated above, a graphical analysis. As there are
more than 30 variables, an exhaustive investigation of each is beyond the scope of this work, with the same being
even more true for relations between different variables. Therefore, we selected one representative example of each to
inspect; each showing the strengths but also possible limitations or problems of the approach.

The first example can be seen in figure 5, where the distributions of the numerical variable Carbon Dioxide (CO)
are compared. It is very clear that the distribution of the generated data is extremely similar to the real one, with there
being some tendency to the mean; this tendency was identified to be inversely proportional to the number of used
models.

CoO
Real
400 Generated
3300
c
(0]
&
0200
[
100
0 0 200 400 600 800 1000 1200
Value

Figure 5: Histogram comparing real and generated values of Carbon Dioxide (CO).

The second example, in figure 6, is very similar to the first one, with the values of a categorical variable, Oil Type,
being compared. The frequency of the values here is even more similar than for the case of numerical variables, with
this being the case for all other categorical variables. Although we might expect a trend to the mode, similar to the
trend for numerical variables, and as this bar plot seems to confirm, in practice we concluded that this was not the case,
with the variations being attributed to what is, in our opinion, just an effect of the random nature of the method; as
other variables or samples of the same variable do not present this effect.

To inspect whether the inter-variable relations are preserved by our generator, we created sets of scatter plots.
Figure 7 shows the relation between CO and Carbon Dioxide (CO2) for both real and generated data. This pair was
selected because it has a relatively high correlation, which means that any discrepancies should be easier to detect.
Overall, we conclude that the relations are very similar, with the correlation for the generated data being somewhat
attenuated, with a larger spread than for the real data.

To further analyse the quality of the generated data we searched for data similarity metrics. An ideal metric
would present the following set of qualities: (1) improve as variable distributions become more similar, (2) improve
as intervariable relations grow closer, (3) be independent of the order of rows in each dataset, and (4) Converge as the
size of the samples for each dataset increases. Although there are many data similarity metrics, only one was found to
satisfactorily fulfill these requirements, propensity. As described in K Dankar and Ibrahim (2021), propensity employs
amodel in a binary regression problem (predict in the range [0,1]) that entails for each data sample identify if it is real
or not. Further more, the degree of "confidence" that the model has is taken into account, with predictions closer to
0.5 indicating less confidence. The formula for propensity is given by equation 3, where p is the predicted value.

PMSE = % Y (5, - 057 3)

Therefore, the value of propensity lies in [0, 0.25], with a lower value indicating a higher similarity between the data
samples. One problem that was identified is that sometimes models give very confident incorrect predictions, with it

José Pinto: Preprint submitted to Elsevier Page 9 of 14

A flexible data generation framework for tabular data

Oil Type
EE Real
400 mw Generated
>300
c
o
=)
£200
[
100
l ﬂ | D e S —
i nctEYYIIODZTOCOGOZ
T oK 8 9 K K o 57 3 EZE S = 2
=) e 0 = n 5 5 = ; s = 5 £
< c £ 54 = 0O O © o =z =z O = g 4
F o =28 z 3%z 2 9 ¢g6b o B F
o £ = S ¥ 2 2 © g & o
& 5 ¥y g 5 5 & 3 E &
S e z u z =
Z D
Value
Figure 6: Histogram comparing real and generated values of Oil Type.
]_6 . ® Real
: Generated
14 .
12
10 2
o~ . .
o 8 ik .
O . N
o . . : . .
6 <, b 8‘ . Lq o° ° :
a N R
v .
2 .
0
400 600 800 1000 1200

Co

Figure 7: Scatter plot comparing the relation between CO and CO2 in the real and generated datasets.

being possible that a model presents 0% accuracy while achieving a minimum (best) value for propensity. To counteract
this, whenever a model made an incorrect prediction, the value of p was considered to be 0.5, which indicates minimal
confidence. The choice of model to calculate propensity is also very important, where logistic regression is a very
common alternative, with some recent results using decision trees, such as K Dankar and Ibrahim (2021). Much like
in the aforementioned work, we found that logistic regression did not achieve sufficient discriminatory performance,
with accuracy around 50% even for mock datasets; we selected as such decision trees.

At this point we need to look back at the real data, which as we have mentioned has a very large quantity
of missing values. This poses a problem, as missing values present very easy to learn discriminatory information.
Although we could generate data with missing values, this would impede the training of downstream models, as most
require completely filled data. Discarding entries with missing values is also not viable, as only 16 data rows would

José Pinto: Preprint submitted to Elsevier Page 10 of 14

A flexible data generation framework for tabular data

Table 1

Table containing similarity metrics for different datasets. Bold indicates best value ("Real" column excluded).

l Metric \ Real \ Constant \ Simple Distribution \ Generated \ Generated, shuffled ‘
Propensity | 0 0.25 0.25 0.193 0.215
Accuracy (%) | 50 100 100 77.1 85.9

remain. Furthermore, filling the spaces with simple values, such as 0 or the mean, would still lead to great unintended
discriminatory ability. Given this, we recall that one of the first steps of our generator is to fill the source (real) data
using the trained imputer. Therefore, we opted to use this filled data, as since any filled values should present the same
characteristics as the generated data, only the real data components would be useful to differentiate between real and
generated datasets.

Other than calculating the propensity of the generated data we also tested two mock datasets. The first simply
uses a constant for all values in each column, with the mean for numerical variables and mode for categorical ones.
The second defines simple distributions for each column, extracting the required data parameters from real data to
create normal distributions for numerical variables, and random sampling of values for categorical ones. A final, fourth
dataset was also created from the generated data, by randomly and independently shuffling the values for each column,
thus maintaining distributions, but destroying relations. From this set, we would expect the simple distribution dataset
to outperform the constant one, since the data distributions are better represented. Then, we would expect the shuffled
generated data to further improve upon this, showing even more similar variable distributions. Finally, we would expect
the untampered generated data to obtain the best results, thus proving that a significant degree of variable relations is
maintained.

Table 1 shows the different propensity scores for each of the aforementioned datasets. For completeness, we opted
to also include model accuracy and the values for the real data (by comparing the real data with itself). The obtained
metrics are mostly in accordance to our expectation, except for the two mock examples, for which the decision tree
managed to archive perfect accuracy, indicating that the datasets are not very similar. For the real data, although
accuracy is exactly as expected, propensity is not necessarily, since, as we noted, sometimes models provide very
confident inaccurate predictions. When we tested logistic regression, even with less than 50% accuracy, the propensity
score was approximately 0.13.

Finally, in this section, we will present the effects of the generated data on downstream model performance. This
was carried out in the form of fault diagnosis, where the fault type (from amongst 7) was predicted in a supervised
multiclass classification problem. To do this the results from 3 different datasets were compared, real, generated and
mixed, containing a combination of real and generated data. In all instances, the real data was used for testing, with 5-
fold cross validation being used to split the real data. To better contrast the different approaches, only the bare minimum
pre-processing was applied, which was done equally for all datasets. This preprocssing involves only 2 steps, first, the
data are balanced in accordance to the target ("fault" columns) using SMOTE and random undersampling, keeping the
data size constant. Then, all categorical columns are one hot encoded. The first step is required because without it,
caused by the extreme data imbalances, only one class is always predicted, which does not allow any differentiation
between the different datasets. Conversely, the second step is also mandatory since the models cannot directly use
categorical values.

Given the goals of data generation tasks, the full dataset might not fit in memory in some settings, and any
model used should be capable of iterative streamed training. The most commonly effective methods for tabular
data, such as decision tree ensembles and many Support Vector Machine (SVM) variants, are not capable of this.
Therefore, we choose to employ a simple Artificial Neural Network (ANN) model, Multi Layer Perceptron (MLP).
Much like for preprocessing, the models’ hyperparameters were kept the same for each dataset, and a minimal amount
of optimization was performed. Thus, all parameters, except hidden layer sizes, were kept at the default values for
PySpark, while the aforementioned hidden layer sizes were set to (64, 64, 32, 32, 16). This approach, with all the
self-imposed limitations, is, of course, not conducive to state-of-the-art model performance; as with such a goal,
extensive preprocessing, including feature selection and engineering; model comparison and selection; and significant
hyperparameter optimization would be required, which would significantly hinder our ability to evaluate the quality of
the generated data.

José Pinto: Preprint submitted to Elsevier Page 11 of 14

A flexible data generation framework for tabular data

Taking this into account, the train and test accuracy curves for real data can be seen in Figure 8, where it is obvious
that the test accuracy quickly plateaus at around 30%. When inspecting Figure 9, which contains the same set of results
for the generated data, a significant performance improvement is evident, with accuracy reaching 50%. For the mixed
dataset, the results shown in Figure 10 are almost identical, showing that the addition of some real data made no
significant difference. With the jump in accuracy from 30% to 50%, the utility of the generated data for downstream
model performance is clear.

0.8 == Train
0.7 Test
0.6
0
@ 0.5
30.4
B¢
0.3
0.2
0.1

0 50 100 150 200 250 300
Step

Figure 8: Train and test accuracy for training in real data.

0.5 — Train A)
Test -'—/
0.4
>
|9}
0.3
=}
|9}
|9}
<
0.2
0.1
0 50 100 150 200 250 300
Step

Figure 9: Train and test accuracy for training in generated data.

6. Conclusion and Future Work

We began this work with the objectives of creating a very flexible synthetic data generator that is both easy to use
and implement. Towards these goals we developed our proposal for a framework and synthetic data generation system,
which is complemented with an imputation-based data generation method. In general, we consider our objectives to
be fully met and our approach to be a viable alternative to other existing systems.

As shown throughout the results section, the basic framework allows the generation of complex interdependent
tabular datasets and time series, which is accomplished by the combination of simple operations working as building
blocks. The imputation based generation greatly furthers the utility of this approach, by automatically generating data
with the desired characteristics of a source dataset with a great degree of fidelity, while requiring no manual work or
fine optimization. The synthetic data generated by this approach was shown to not only be robust to visual analysis but
to also permit the improvement of downstream model performance.

José Pinto: Preprint submitted to Elsevier Page 12 of 14

A flexible data generation framework for tabular data

0.5 —— Train w—__
Test ’___,-:-—""_
0.4
>
(S}
Co3
]
|9}
O
<
0.2
0.1
0 50 100 150 200 250 300
Step

Figure 10: Train and test accuracy for training in mixed real-generated data.

6.1. Limitations

Of course, no work is without its limitations. One such limitation is the computational cost of this approach.
Although high throughputs were not one of our primary goals, improving this aspect would definitely aid in the utility
of this framework.

The imputation-based generator is also limited in the fact that, unlike the rest of the framework, it is not suitable
to generate time series. Furthermore, given the need to create a large number of models, even if computational time is
not a constraining factor, memory limits may be reached.

6.2. Future Work

Given the aforementioned limitations, one future avenue of research involves increasing the parallel computing
compatibility of the tool for time series (it is trivial for independent tabular data). Possible solutions include working
on independent subtrees, taking advantage of the fact that not all variables may be related; or using pipelining, with
different compute units working on different operations. To expand the capability of the imputation-based generator
to time series, a combination of interpolation and time series generation models, such as Long Short Term Memory
(LSTM) networks, seems promising.

Other than improvements to the existing systems, we also find it important to inspect the effectiveness of the
framework on a wider set of datasets from various fields and do user studies to better understand usability bottlenecks.
This would help to improve the design and the proposed API further. Finally, investigating the possibility of better and
more easily enforcing logical constraints by applying pre-processing and post-processing transformations to the data,
could garner critical insights; for example, preserve a restriction A > B by using the values of B and A-B.

7. Acknowledgments

This work was supported by Fundo Europeu de Desenvolvimento Regional (FEDER) and Programa Operacional
Competitividade e Internacionalizagao through the project TRF4p0 - TRANSFORMER4.0: DIGITAL REVOLUTION
OF POWER TRANSFORMERS with reference POCI-01-0247-FEDER-045926.

References

Abay, N.C., Zhou, Y., Kantarcioglu, M., Thuraisingham, B., Sweeney, L., 2018. Privacy preserving synthetic data release using deep learning, in:
Joint European Conference on Machine Learning and Knowledge Discovery in Databases, Springer. pp. 510-526.

Alzantot, M., Chakraborty, S., Srivastava, M., 2017. Sensegen: A deep learning architecture for synthetic sensor data generation, in: 2017 IEEE
International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), IEEE. pp. 188—193.

Amin, J., Sharif, M., Gul, N., Kadry, S., Chakraborty, C., 2021. Quantum machine learning architecture for covid-19 classification based on synthetic
data generation using conditional adversarial neural network. Cognitive Computation , 1-12.

Anderson, J.W., Kennedy, K.E., Ngo, L.B., Luckow, A., Apon, A.W., 2014. Synthetic data generation for the internet of things, in: 2014 IEEE
International Conference on Big Data (Big Data), IEEE. pp. 171-176.

Ayala-Rivera, V., McDonagh, P., Cerqueus, T., Murphy, L., 2013. Synthetic data generation using benerator tool. arXiv preprint arXiv:1311.3312 .

Boikov, A., Payor, V., Savelev, R., Kolesnikov, A., 2021. Synthetic data generation for steel defect detection and classification using deep learning.
Symmetry 13, 1176.

José Pinto: Preprint submitted to Elsevier Page 13 of 14

A flexible data generation framework for tabular data

Dahmen, J., Cook, D., 2019. Synsys: A synthetic data generation system for healthcare applications. Sensors 19, 1181.

Devaranjan, J., Kar, A., Fidler, S., 2020. Meta-sim2: Unsupervised learning of scene structure for synthetic data generation, in: European Conference
on Computer Vision, Springer. pp. 715-733.

Ekbatani, H.K., Pujol, O., Segui, S., 2017. Synthetic data generation for deep learning in counting pedestrians., in: ICPRAM, pp. 318-323.

Hoag, J.E., Thompson, C.W., 2007. A parallel general-purpose synthetic data generator. ACM SIGMOD Record 36, 19-24.

Houkjer, K., Torp, K., Wind, R., 2006. Simple and realistic data generation, in: Proceedings of the 32nd international conference on Very large
data bases, pp. 1243-1246.

Jeske, D.R., Lin, P.J., Rendon, C., Xiao, R., Samadi, B., 2006. Synthetic data generation capabilties for testing data mining tools, in: MILCOM
2006-2006 IEEE Military Communications conference, IEEE. pp. 1-6.

K Dankar, F., Ibrahim, M., 2021. Fake it till you make it: Guidelines for effective synthetic data generation. Applied Sciences 11, 2158.

Krishnan, P., Jawahar, C., 2016. Generating synthetic data for text recognition. arXiv preprint arXiv:1608.04224 .

Krizhevsky, A., Sutskever, 1., Hinton, G.E., 2012. Imagenet classification with deep convolutional neural networks. Advances in neural information
processing systems 25.

Mannino, M., Abouzied, A., 2019. Is this real? generating synthetic data that looks real, in: Proceedings of the 32nd Annual ACM Symposium on
User Interface Software and Technology, pp. 549-561.

Martinez-Gonzalez, P., Oprea, S., Garcia-Garcia, A., Jover-Alvarez, A., Orts-Escolano, S., Garcia-Rodriguez, J., 2020. Unrealrox: an extremely
photorealistic virtual reality environment for robotics simulations and synthetic data generation. Virtual Reality 24, 271-288.

Pei, Y., Zaiane, O., 2006. A synthetic data generator for clustering and outlier analysis .

Planche, B., Wu, Z., Ma, K., Sun, S., Kluckner, S., Lehmann, O., Chen, T., Hutter, A., Zakharov, S., Kosch, H., et al., 2017. Depthsynth: Real-time
realistic synthetic data generation from cad models for 2.5 d recognition, in: 2017 International Conference on 3D Vision (3DV), IEEE. pp. 1-10.

Shakeri, S., Santos, C.N.d., Zhu, H., Ng, P., Nan, F., Wang, Z., Nallapati, R., Xiang, B., 2020. End-to-end synthetic data generation for domain
adaptation of question answering systems. arXiv preprint arXiv:2010.06028 .

Soltana, G., Sabetzadeh, M., Briand, L.C., 2017. Synthetic data generation for statistical testing, in: 2017 32nd IEEE/ACM International Conference
on Automated Software Engineering (ASE), IEEE. pp. 872-882.

Sun, Y., Cuesta-Infante, A., Veeramachaneni, K., 2019. Learning vine copula models for synthetic data generation, in: Proceedings of the AAAI
Conference on Artificial Intelligence, pp. 5049-5057.

Taranta, E.M., Maghoumi, M., Pittman, C.R., LaViola Jr, J.J., 2016. A rapid prototyping approach to synthetic data generation for improved 2d
gesture recognition, in: Proceedings of the 29th Annual Symposium on User Interface Software and Technology, pp. 873-885.

Tripathi, S., Chandra, S., Agrawal, A., Tyagi, A., Rehg, J.M., Chari, V., 2019. Learning to generate synthetic data via compositing, in: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 461-470.

Tsirikoglou, A., Kronander, J., Wrenninge, M., Unger, J., 2017. Procedural modeling and physically based rendering for synthetic data generation
in automotive applications. arXiv preprint arXiv:1710.06270 .

Yu, Y., Ganesan, D., Girod, L., Estrin, D., Govindan, R., 2003. Synthetic data generation to support irregular sampling in sensor networks. GeoSensor
Networks 1, 211-234.

Zhang, L., Gonzalez-Garcia, A., Van De Weijer, J., Danelljan, M., Khan, F.S., 2018. Synthetic data generation for end-to-end thermal infrared
tracking. IEEE Transactions on Image Processing 28, 1837-1850.

Zuo, W., Yuan, H., Shang, Y., Liu, Y., Chen, T., 2016. Calculation of a health index of oil-paper transformers insulation with binary logistic
regression. Mathematical problems in engineering 2016.

8. Appendix

José Pinto: Preprint submitted to Elsevier Page 14 of 14

40

41

42

43

44

45

A flexible data generation framework for tabular data

N = 1000

gen = Generator ()
gen.add_variable (VARIABLES.Counter, name="base_idx", start_value=0)

create state transitions
gen.add_variable(
VARIABLES .MarkovChain,
name="states",
start_value="A",
states=["A", "B"],
transitions=[("A", "B", 0.001), ("B", "A", 0.005)],

create state 1
gen.add_transformation(
TRANSFORMATIONS .Mult,
in_columns=["base_idx"],
out_columns=["h1"],
value=(15 * 2 * pi) / N,
drop_input=False,
)
gen.add_transformation(TRANSFORMATIONS.Sin, in_columns=["h1"])
gen.add_transformation(TRANSFORMATIONS.Mult, in_columns=["h1"], value=310)

create state 2
gen.add_transformation(
TRANSFORMATIONS.Mult,
in_columns=["base_idx"],
out_columns=["h2"],
value=(15 * 2 * pi) / N,
)
gen.add_transformation(TRANSFORMATIONS.Sin, in_columns=["h2"])
gen.add_transformation(TRANSFORMATIONS.Mult, in_columns=["h2"], value=210)

transition between states

gen.add_transformation(
TRANSFORMATIONS.StateChange,
in_columns=["h1", "h2"],
state_column="states",
states=["A", "B"],

out_column="interruption",

df = gen.generate(N)

Listing 1: Example of code for generating a "sag" signal.

José Pinto: Preprint submitted to Elsevier

Page 15 of 14

23

24

25

26

A flexible data generation framework for tabular data

N =

gen

1000

= Generator ()

create base wvariables with intended normal distribution

gen.
gen.
gen.
gen.
gen.
gen.

add_variable (VARIABLES
add_variable (VARIABLES

add_variable (VARIABLES
add_variable (VARIABLES
add_variable (VARIABLES

.Normal, name="Water", mean=6.08, std=4.36)
.Normal, name="Acidity", mean=0.0382, std=0.06)
add_variable (VARIABLES.
.Normal, name="DF'", mean=0.275, std=0.23)
.Normal, name="TDCG", mean=301.91, std=381.9)
.Normal, name="Furan", mean=0.171, std=0.407)

Normal, name="BDV'", mean=49.34, std=16.06)

perform logistic combination of wvariables

gen.

)

add_transformation (

TRANSFORMATIONS.Linear,

in_columns=["Water", "Acidity", "BDV", "DF", "TDCG", "Furan"],

out_column="HI",
intercept=5.45,
coefs=[-0.246, 28.604,

-0.171, 0.112, 0.01, 0.254]

gen.add_transformation(TRANSFORMATIONS.Mult, in_columns=["HI"], value=-1)
gen.add_transformation(TRANSFORMATIONS.Exp, in_columns=["HI"])
gen.add_transformation(TRANSFORMATIONS.Add, in_columns=["HI"] value=1)
gen.add_transformation(TRANSFORMATIONS.Power, in_columns=["HI"], value=-1)

df =

gen.generate (N)

Listing 2: Example of code for recreating the HI model.

José Pinto: Preprint submitted to Elsevier

Page 16 of 14

